Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Res Immunol ; 3: 1-12, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496820

RESUMO

CD8 T cells have multiple functional properties that mediate acute phase and long-term immune protection. Several effector and memory CD8 T cell subsets have been described with diverse functionalities and marker profiles. In contrast to the many comprehensive mouse studies, most human studies lack samples from the acute infection phase, a major reason why current knowledge of human T cell subsets and differentiation remains incomplete, particularly with regard to the T cell heterogeneity early during the immune response. Here we analysed the human CD8 T cell response to yellow fever vaccination as the best-known model to study the human immune response to acute viral infection. We performed flow cytometry on 21 markers conventionally used in mice and in humans to describe differentiation, activation, cycling, and so-called effector functions. We found clearly distinct 'acute traits' at the peak of the response that are shared amongst all non-naïve antigen-specific subsets, including memory-differentiated cells. These acute traits were low BCL-2 and high KI67, CD38, HLA-DR, as well as increased Granzyme B and Perforin, previously attributed only to effector cells at the peak of the response. Furthermore, analysis of chromatin accessibility at the single cell level revealed that memory- and effector-differentiated cells clustered together specifically in the acute phase. Altogether, we demonstrate 'acute traits' across differentiation subsets, and point out the need to discriminate the differentiation states when studying human CD8 T cells that undergo an acute response.

2.
Hum Vaccin Immunother ; 17(8): 2471-2481, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33909542

RESUMO

By preventing infectious diseases, vaccines contribute substantially to public health. Besides, they offer great opportunities to investigate human immune responses. This is particularly true for live-attenuated virus vaccines which cause resolving acute infections and induce robust immunity. The fact that one can precisely schedule the time-point of vaccination enables complete characterization of the immune response over time, short-term and over many years. The live-attenuated Yellow Fever virus vaccine strain YF-17D was developed in the 1930's and gave rise to the 17D-204 and 17DD vaccine sub-strains, administered to over 600 million individuals worldwide. YF vaccination causes a systemic viral infection, which induces neutralizing antibodies that last for a lifetime. It also induces a strong T cell response resembling the ones of acute infections, in contrast to most other vaccines. In spite of its use since 1937, learning how YF vaccination stimulates such strong and persistent immune responses has gained substantial knowledge only in the last decades. Here we summarize the current state of knowledge on the immune response to YF vaccination, and discuss its contribution as a human model to address complex questions on optimal immune responses.


Assuntos
Vacina contra Febre Amarela , Febre Amarela , Anticorpos Antivirais , Humanos , Imunidade , Vacinação , Vacinas Atenuadas , Febre Amarela/prevenção & controle , Vírus da Febre Amarela
3.
Mol Immunol ; 125: 43-50, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32645549

RESUMO

The CD8 T cell response to the HLA-A2-restricted epitope LLWNGPMAV (LLW) of the non-structural protein 4b of Yellow Fever Virus (YFV) is remarkably immunodominant, highly prevalent and powerful in YFV-vaccinated humans. Here we used a combinatorial peptide library screening in the context of an A2/LLW-specific CD8 T cell clone to identify a superagonist that features a methionine to isoleucine substitution at position 7. Based on in silico modeling, the functional enhancement of this LLW-7I mutation was associated with alterations in the structural dynamics of the peptide in the major histocompatibility complex (pMHC) binding with the T cell receptor (TCR). While the TCR off-rate of LLW-7I pMHC is comparable to the wild type peptide, the rigidity of the 7I peptide seems to confer less entropy loss upon TCR binding. This LLW-7I superagonist is an example of improved functionality in human CD8 T cells associated with optimized ligand rigidity for TCR binding and not with changes in TCR:pMHC off-rate kinetics.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos Imunodominantes/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas não Estruturais Virais/imunologia , Vírus da Febre Amarela/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Antígeno HLA-A2/química , Antígeno HLA-A2/imunologia , Humanos , Epitopos Imunodominantes/química , Modelos Moleculares , Mutação , Biblioteca de Peptídeos , Ligação Proteica/imunologia , Receptores de Antígenos de Linfócitos T/química
4.
Hum Vaccin Immunother ; 16(12): 3103-3110, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32348192

RESUMO

Lymphocyte recirculation within the human body is essential for efficient pathogen detection and immune responses. So far, immune cell migration has been investigated largely using ovine and murine models, with little evidence in humans. Here, we analyzed peripheral blood of healthy individuals following primary vaccination with the Yellow Fever vaccine YF-17D. We found that the number of leukocytes was transiently and sharply reduced in blood as detected on day 7 after vaccine administration. The T cell drop was restricted to cells expressing the lymph node-homing chemokine receptor CCR7. Interestingly, the vaccine-induced drop positively correlated with the expression of CD69 by the T cells before vaccination. This suggests that CCR7+ T cells are being trapped within the lymph nodes through CD69-induced suppression of egress. Strikingly, we further found that the T cell drop negatively correlated with CD8 T cell activation and with production of neutralizing antibodies. In conclusion, early and transient T cell depletion in blood negatively correlated with protective immune response events induced by YF-17D vaccination. Our data highlight baseline CD69 expression and early drop in T cells as potential biomarkers of the Yellow Fever vaccine response.


Assuntos
Linfócitos T , Vacina contra Febre Amarela , Febre Amarela , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Camundongos , Ovinos , Vacinação , Febre Amarela/prevenção & controle , Vacina contra Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia
5.
Vaccine ; 38(9): 2172-2182, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32008879

RESUMO

Ever since its development in the 1930's, the live-attenuated Yellow Fever virus vaccine YF-17D has been highly effective. Despite the increasing knowledge on the immune biology of the YF-17D vaccine, most studies have focused only on a few types of immune cells and pathways or mainly on the primary adaptive immune response to YF-17D vaccination. Here, we examined humoral, innate and adaptive cellular responses in a longitudinal YF-17D vaccination study in Switzerland, comparing both primary and booster vaccination. In contrast to the strong innate and adaptive immune response to the primary vaccination, we find that the response to boosting is much reduced. Our data show an inverse association of neutralizing antibodies at baseline with vaccine virus replication and with the immune response upon boosting. These results suggest that booster vaccination may not have major immunological effects when neutralizing antibodies are present. Importantly, our study population was healthy adults in a non-endemic country and ultimately booster vaccine requirement must be assessed based on additional epidemiological and public health considerations in endemic areas.


Assuntos
Anticorpos Antivirais/imunologia , Imunização Secundária , Vacina contra Febre Amarela/administração & dosagem , Febre Amarela/imunologia , Adulto , Anticorpos Neutralizantes/imunologia , Humanos , Imunidade Celular , Imunidade Humoral , Imunidade Inata , Suíça , Febre Amarela/prevenção & controle
6.
J Immunol ; 200(7): 2263-2279, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29483360

RESUMO

Peptide-MHC (pMHC) multimers, usually used as streptavidin-based tetramers, have transformed the study of Ag-specific T cells by allowing direct detection, phenotyping, and enumeration within polyclonal T cell populations. These reagents are now a standard part of the immunology toolkit and have been used in many thousands of published studies. Unfortunately, the TCR-affinity threshold required for staining with standard pMHC multimer protocols is higher than that required for efficient T cell activation. This discrepancy makes it possible for pMHC multimer staining to miss fully functional T cells, especially where low-affinity TCRs predominate, such as in MHC class II-restricted responses or those directed against self-antigens. Several recent, somewhat alarming, reports indicate that pMHC staining might fail to detect the majority of functional T cells and have prompted suggestions that T cell immunology has become biased toward the type of cells amenable to detection with multimeric pMHC. We use several viral- and tumor-specific pMHC reagents to compare populations of human T cells stained by standard pMHC protocols and optimized protocols that we have developed. Our results confirm that optimized protocols recover greater populations of T cells that include fully functional T cell clonotypes that cannot be stained by regular pMHC-staining protocols. These results highlight the importance of using optimized procedures that include the use of protein kinase inhibitor and Ab cross-linking during staining to maximize the recovery of Ag-specific T cells and serve to further highlight that many previous quantifications of T cell responses with pMHC reagents are likely to have considerably underestimated the size of the relevant populations.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígeno HLA-A2/imunologia , Linfócitos do Interstício Tumoral/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Coloração e Rotulagem/métodos , Citomegalovirus/imunologia , Herpesvirus Humano 4/imunologia , Humanos , Ativação Linfocitária/imunologia , Melanoma/imunologia , Orthomyxoviridae/imunologia , Ligação Proteica/imunologia , Inibidores de Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/imunologia , Células Tumorais Cultivadas
7.
Eur J Immunol ; 48(2): 258-272, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28975614

RESUMO

The repertoire of human αß T-cell receptors (TCRs) is generated via somatic recombination of germline gene segments. Despite this enormous variation, certain epitopes can be immunodominant, associated with high frequencies of antigen-specific T cells and/or exhibit bias toward a TCR gene segment. Here, we studied the TCR repertoire of the HLA-A*0201-restricted epitope LLWNGPMAV (hereafter, A2/LLW) from Yellow Fever virus, which generates an immunodominant CD8+ T cell response to the highly effective YF-17D vaccine. We discover that these A2/LLW-specific CD8+ T cells are highly biased for the TCR α chain TRAV12-2. This bias is already present in A2/LLW-specific naïve T cells before vaccination with YF-17D. Using CD8+ T cell clones, we show that TRAV12-2 does not confer a functional advantage on a per cell basis. Molecular modeling indicated that the germline-encoded complementarity determining region (CDR) 1α loop of TRAV12-2 critically contributes to A2/LLW binding, in contrast to the conventional dominant dependence on somatically rearranged CDR3 loops. This germline component of antigen recognition may explain the unusually high precursor frequency, prevalence and immunodominance of T-cell responses specific for the A2/LLW epitope.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Regiões Determinantes de Complementaridade/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Vacinas Virais/imunologia , Febre Amarela/imunologia , Vírus da Febre Amarela/fisiologia , Imunidade Adaptativa/genética , Linhagem Celular , Seleção Clonal Mediada por Antígeno , Células Clonais , Citotoxicidade Imunológica , Epitopos de Linfócito T/metabolismo , Antígeno HLA-A2/metabolismo , Humanos , Epitopos Imunodominantes/metabolismo , Ativação Linfocitária , Especificidade do Receptor de Antígeno de Linfócitos T , Proteínas Virais/metabolismo , Febre Amarela/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA